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SUMMARY 
A generally applicable finite element procedure for the prediction of laminar mixed convection in horizontal 
straight ducts of arbitrary cross-section is presented. The procedure, based on the parabolized simplification 
of the complete Navier-Stokes equations and on the Boussinesq approximation of the buoyancy terms, is 
validated through comparisons of computed results with the available literature data for mixed convection 
in the entrance region of a rectangular duct of aspect ratio a=2. Uniform heating at different sides is 
considered as the thermal boundary condition, although the proposed formulation allows specification of 
most thermal boundary conditions of practical interest. 
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INTRODUCTION 

The prediction of laminar forced convection heat transfer in the entrance region of straight ducts 
of constant cross-section has attracted the attention of many researchers because of its prime 
interest in the design of compact heat exchangers.' However, in laminar internal flows, buoyancy 
can significantly enhance heat transfer through its effect on velocity and temperature fields. In 
fact, variations of density with temperature can induce buoyancy-driven secondary flows which 
strongly affect the heat transfer mechanisms of the pure forced convection. When free and forced 
convection effects are comparable, mixed convection is said to occur. Since buoyancy effects are 
especially significant for flows in horizontal ducts, many attempts have been made to numerically 
simulate mixed convection in the entrance region of horizontal straight ducts of constant cross- 
section.2 - * 

A general approach to the problem of forced convection in ducts of arbitrary cross-section with 
different boundary conditions has already been proposed by the authors in the context of the 
finite element lo In the numerical procedure, capable of dealing with the simultaneous 
development of the velocity and temperature fields in duct flows, the momentum and energy 
equations were solved in sequence and the transverse velocity field was estimated according to a 
strategy similar to the SIMPLE algorithm.'l, l2 In the SIMPLE algorithm the important 
operations, in order of execution, are as follows. 

1. Estimate the transverse pressure field and the buoyancy terms from the previous axial step. 
2. Using the estimated pressure, solve the momentum equations to obtain approximate cross- 

flow velocity components. 
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3. Calculate the pressure corrections that enforce continuity and the corresponding velocity 

4. Treat the corrected pressure as the estimated pressure for the new axial step. 
corrections. 

The procedure was applied to the prediction of simultaneously developing flows in square ducts’ 
and in equilateral triangular ducts.” 

In this paper the procedure described in References 9 and 10 is used to obtain predictions of the 
laminar mixed convection in the entrance region of horizontal straight ducts of arbitrary, but 
constant, cross-section. Buoyancy effects are accounted for by employing the Boussinesq approx- 
imation and by allowing the density in the body force term to vary linearly with temperature. 
Such an extension of the above finite element procedure was proposed first el~ewhere,’~ with 
reference to mixed convection in a rectangular duct uniformly heated from below. A more 
complete formulation is presented here which includes different thermal boundary conditions and 
heating configurations, thus allowing the analysis of flows in ducts of arbitrary cross-sections 
subjected to most thermal boundary conditions of practical interest. 

The method is general and applicable to the cases of both isothermal walls and uniform surface 
heat flux. However, in the numerical computations, only the prescribed flux boundary conditions 
are considered to allow comparisons with literature results concerning mixed convection in 
horizontal rectangular ducts.* Actually, uniform surface heat flux, resulting in driving forces for 
the secondary flow whose strengths are comparable at any distance from inlet, represents the 
most severe thermal boundary condition for mixed convection problems. In fact, if isothermal 
walls are considered, numerical difficulties are reduced because buoyancy forces decrease with 
increasing axial position and the secondary transverse flow vanishes as fully developed forced 
convection is approached. 

The aim of this paper is the validation of the proposed procedure with reference to the test cases 
reported in Reference 8, concerning mixed convection in a horizontal rectangular duct of aspect 
ratio a = 2 for Grashof number Gr = 2.5 x lo5 and Prandtl number Pr = 6.5. Different heating 
configurations are considered, namely uniform heating at one to four duct sides with the 
remaining walls adiabatic. The analysis focuses on the development of the velocity and temper- 
ature fields in the entrance region of the duct, and an attempt is made to reduce the total number 
of axial steps necessary to carry out the simulations in order to maintain the computer time 
within acceptable limits. 

MATHEMATICAL FORMULATION 

Consideration is given to laminar flow in horizontal straight ducts of arbitrary, but axially 
unchanging, cross-section. Flow is in the positive axial direction x, while y and z are the 
horizontal and vertical cross-sectional co-ordinates. In such a case, when axial diffusion can be 
neglectedg* l4 and axial recirculation is absent, to co-ordinate x in the main direction becomes a 
‘one-way’ co-ordinate which plays the role of time in the upstream-to-downstream march. A flow 
of this kind is called ‘parabolic’.’’, l4 

The constant-property, incompressible, steady laminar flow in a horizontal straight duct is 
governed by the continuity equation 

and the momentum equations, written in the following conservative form in which the divergence 
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D of the velocity field is retained 

where u = (u)/(ii), u = ( v ) / ( i i )  and w = ( w ) / ( i i )  are dimensionless velocity components, 
x = (x)/(D,,),  y =  (y) / (D, , )  and z =  ( z ) / ( D h )  are dimensionless co-ordinates, p =  ( p ) / ( p )  ( t i )2  

is the dimensionless pressure and T =  (( T) - (&)) / (AT,)  is the dimensionless temperature, 
(AT,) being an appropriate reference temperature difference to be defined according to the kind 
of thermal boundary conditions imposed. In the above expressions p is the average value over the 
cross-section of the dimensionless pressure p ,  T, is a reference temperature to account for local 
density variations, which can be assumed as the mean temperature over the cross-section,’* 
and R e = ( p ) ( i i ) ( 4 , ) / ( p )  and G r = < g ) ( / 3 ) ( A T o ) ( p ) 2 ( D h ) 3 / ( p ) 2  are the Reynolds and 
Grashof numbers. 

When axial conduction can be negle~ted,’~ the steady state dimensionless energy equation 
appropriate to the laminar flow in straight ducts of arbitrary cross-section is 

where Pe= RePr is the Peclet number, Pr being the Prandtl number. 
The computational domain may be surrounded by rigid wall boundaries and symmetry 

boundaries. At rigid walls, no-slip boundary conditions apply for the momentum equations, while 
most thermal boundary conditions of practical interest can be dealt with e a ~ i l y . ~ . ’ ~  With 
reference to equation (5) they can be written in dimensionless form as 

T= T, (6) 
for first-kind (or temperature) boundary condition, as 

1 aT aT 
- s ( a y  -ny+-nn,  az ) =q” 

for second-kind (or heat flux) boundary conditions and as 

(7) 

for third-kind (or convection) boundary conditions. In equation (7) and (8), 

41’=<4’1)/(<P)<cp) (AT,) (a) 
is the dimensionless heat flux and E i = ( h , ) ( D , , ) / ( k )  is the Biot number, in which 
(ha) = ( q f f ) / ( ( T w )  - (T.)) is the external (equivalent) heat transfer coefficient. Finally, ny and n, 
are the direction cosines of the outward normal to the boundary. The above boundary conditions, 
equations (6H8), can be specified on the whole rigid boundary or on part of it only. In such a case 
the natural boundary condition aT/an = 0 can be specified on the remaining part, i.e. the adiabatic 
one, of the rigid boundary. Appropriate dehitions of the reference temperature difference are 



36 C. NONINO AND S. DEL GIUDICE 

(AT,) = ( T w ) - ( T e )  for first-kind boundary conditions, (AT,) = ( q " ) ( D , , ) / ( k )  for second- 
kind boundary conditions and (AT,) = (T , )  - ( T , )  for third-kind boundary conditions. 

Symmetry conditions can be written as 

or 

for boundaries aligned respectively with the y- or z-direction. 
In incompressible flows the pressure is an implicit variable which instantaneously adjusts itself 

in such a way that continuity remains satisfied. However, one pressure datum has to be specified 
or the pressure will be obtainable up to an arbitrary additive constant only. 

Finally, in three-dimensional parabolic flows, velocity and temperature inflow conditions 
correspond to the initial conditions for the numerical simulation. In addition, a pressure field 
accommodating the inlet velocity field must be assumed. In the common case of uniform axial 
velocity at the entrance, as in developing flow in ducts, a uniform pressure field is the appropriate 
initial choice. 

SOLUTION STRATEGY AND FINITE ELEMENT DISCRETIZATION 

The solution strategy for the model equations (1H4) is described in this paper with reference to 
the discretized equations obtained by the standard Galerkin approach. Matrix elements, not 
reported here for the sake of brevity, are listed in Appendix I. 

Two distinct velocity-pressure couplings result in three-dimensional parabolic flows: one in the 
main parabolic direction and the other in the cross-flow The first one is used to 
determine the value of dp/dx that gives the correct mass flow in the x-direction. The second one 
corrects cross-stream velocities to enforce local continuity, according to equation (1). 

The axial momentum equation (2) is considered first. The u-velocity field at the end of the 
(n+ 1)th axial step is expressed as a sum u"" =u* +u' of estimated (*) and correction (') values. 
The u* field is determined on the basis of known velocity values u", v", w" and an estimated value 
of the pressure gradient (dp/dx)*: 

u*-un 
(9) 

where a finite difference scheme is used to march ahead in the axial direction with arbitrary axial 
step size  AX.^.'^ In equation (9), Mu is the mass matrix, H and H, are diffusion and convection 
matrices respectively and q i  is the load vector containing the estimated axial pressure gradient. 

With reference to flow in straight ducts, on integrating equation (2) across section A,  one 
finds'. l4 

where C is the contour of A and K,= 1/Aj, u2 dA is the momentum flux correction factor. The 
first term on the right-hand side of equation (10) can be evaluated from a backward formula,'. l4 

while the sum of the reactions at the previous axial step is used in the calculation of the second 
term.' 

Therefore, since in general the u*-field thus determined does not satisfy exactly the integral 
mass flow constraint, by assuming that the velocity profiles u"+' and u* present similar shapes, 
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the correction term u' can be expressed in a very simple way 

1 -li* 
u'=- U* u* 

In order to compute the cross-stream pressure and velocities, a SIMPLE-like strategy' ', is 

Using a fully implicit Euler algorithm for axial integration, equations (3) and (4) can be 
used. 

discretized as 

(13) 

where v"+l and are transverse velocity components at the end of the (n + 1)th axial step and 
qu and qw are load vectors containing the pressure gradients and the buoyancy term. Since the 
pressure gradients appearing in q, and q, are unknown before the (n+l)th axial step is 
completed, equations (12) and (13) cannot be solved directly in this form. 

If, however, the pressure p* = p" is used in the evaluation of the load vectors q, and q,, together 
with the temperature t", approximate values v* and w* of transverse velocity components can be 
computed from the approximate momentum equations 

Since the approximate values of the velocity components given by equations (14) and (15), 
together with the computed axial velocity field u, do not satisfy in general the local continuity 
constraint, appropriate correction velocities v' and w' must be added to v* and w* to give v"+ ' and 
w"". Local continuity can be enforced by requiring that the divergence of the correction velocity 
field (v', w') should balance the divergence of the approximate velocity field (u, v*, w*). In this way 
the required divergence-free velocity field (u"", w"+') is obtained at the end of the (n + 1)th 
axial step. 

In order to compute correction velocities Y ' = V " + ~ - - V *  and w'=w"+I -w*, the pressure p"+' 
can be expressed as the sum of the guessed pressure p* = p" and a correction pressure p' which, 
had it been added to p* before the linearized momentum equations (14) and (15) were solved, 
would have yielded a transverse velocity field that satisfied the mass conservation constraint. 
Accordingly, momentum equations (12) and (13) can be written in the approximate form 

v* - v" + Y"+ 
-v*) ( ;e ) 

w*-w" w"+l-w*) + (ie -H+H, ) W*+q$+qk=O, 

+ -H+H, V*+q:+qk=O, 
AX 

7' Ax 

where the viscous and convective terms pertaining to the correction velocities v' and w' are 
neglected. 
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Equations (16) and (17) can be split into the approximate momentum equations (14) and (15) 
and the correction momentum equations 

-V* p+ 1 
+q:=o, Mu Ax 

w"+l-w* 
+q:=o Mu Ax 

which link the correction velocities v' and w' to the gradients of the pressure corrections p' 
appearing in the load vectors q: and q:. According to equations (18) and (19), the continuity 
constraint, i.e. the condition of zero divergence of the corrected velocity field, implies a pressure 
correction distribution satisfying the Poisson equation 

H,P' + q, = 0, (20) 
where H, is a stiffness matrix and qp is a load vector containing the divergence of the approximate 
velocity field (u, v*, w*). Appropriate boundary conditions for equation (20) are'', l4 

(i) pressure correction equal to zero where pressure is specified 
(ii) pressure correction gradient equal to zero (natural boundary condition) elsewhere. 

Once the p'-field is known and q: and q: are evaluated, equations (18) and (19) can be solved to 
give correction velocities v' and w'. Then the pressure and velocity fields can be updated as 

p"' 1 = p" + pl, 
, ,n+ l -  - v  +v', 

(23) W"+ 1 = w* + w', 
giving the required solution of equations (12) and (13) satisfying local mass conservation at the 
end of the (n + 1)th axial step. 

When the velocity and pressure fields have been computed, the energy equation (5)  is solved in 
its discretized form' to yield the thermal field P': 

where HT is a stiffness matrix and qT is a load vector containing specified boundary heat fluxes. 
Finally, local shear stresses and heat fluxes on the restrained wall nodes can be evaluated by 

means of the nodal  reaction^'.'^ 

NUMERICAL RESULTS 

The formulation outlined in the previous section is general and applicable to any type of finite 
element discretization, even if in the present work reference is made to eight-node parabolic 
elements. 

The procedure was validated through comparisons with literature results for pure forced 
convection in the entrance region of parallel plate channels: square ducts' and equilateral 
triangular ducts," with the Prandtl number ranging from 0-1 to 10. In this range of Prandtl 
number, new results, not available in the literature, were also presented for the simultaneously 
developing flow in square and triangular ducts with first-, second- and third-kind thermal 
boundary  condition^.'^ lo 
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The same procedure was also employed in the study of a mixed convection problem concerning 
simultaneously developing flow in a horizontal rectangular duct uniformly heated from below.' ' 
Grashof numbers as high as 2.5 x lo6 were considered, while the Prandtl number was kept equal 
to 1. 

In this study an investigation of the laminar mixed convection in the inlet region of horizontal 
rectangular ducts of aspect ratio a = 2  is presented with reference to different heating con- 
figurations. To allow comparisons with available literature results,' Re = 500, Pr = 6.5 and 
Gr = 2.5 x lo5 are assumed, and the effects of uniform heating, i.e. with uniform imposed flux q", 
on top, side and bottom walls, in any possible combination, are analysed. Non-heated walls are 
considered adiabatic. Uniform profiles for axial velocity, pressure and temperature, together with 
the absence of any secondary (transverse) flow, are assumed at the entrance. The computational 
domain, reduced to one-half of the cross-section because of the existing vertical symmetry, is 
discretized using a non-uniform mesh consisting of 168 parabolic elements and 557 nodes 
(Figure 1). Since buoyancy-induced secondary flows necessitate the same resolution across the 
entire cross-section, a uniform mesh is employed over most of the domain. However, in order to 
improve the accuracy of the solution near the duct entrance, smaller elements are used in the wall 
regions, where steeper gradients of the variables are expected. The longitudinal step size is 
allowed to increase systematically from prescribed minimum to maximum values with increasing 
axial distance from the inlet. A sufficient independence of the axial step was ensured with a 
minimum starting value Ax=O*Ol and a maximum value Ax=0-32, with a total of about 1100 
steps to reach the dimensionless distance x/D,,Pe = 0.1 from the inlet. The maximum step size used 
here is thus one order of magnitude larger than the one employed by Mahaney et al." in their 
simulations obtained by a control-volume-based finite difference procedure. Anyway, local and 
global energy conservations were satisfied within acceptable limits in all cases. 

Comparisons with results by Mahaney et a/.' concern axial distributions of the local Nusselt 
number Nu averaged over each heated side L, which can be calculated as 

c 
Figure 1. Finite element mesh used in the analysis of mixed convection in the entrance region of rectangular ducts: one- 

half of the cross-section is considered because of the existing vertical symmetry 
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Figure 2. Longitudinal distribution of the local Nusselt number Nufor bottom heating: -, present solution; 0, sample 
points from Reference 8; ---, forced convection limit 

where 

uTdA 
Tb = 

F.=- T,dL. : 
Additional comparisons, concerning cross-stream velocity and temperature distributions over the 
cross-section for selected values of the axial distance from the inlet, could only be carried out 
qualitatively and thus are not reported here. 

Heating at a single surface, namely the bottom, side or top of the duct, is considered first. Then 
the effects of equal heating at two surfaces are analysed together with the additional case of equal 
cooling from above and heating from below. Finally the case of peripherally uniform heating is 
considered. Results of the numerical simulations, both for velocity and temperature distributions 
and for longitudinal Nusselt number profiles, show qualitative agreement with those obtained by 
Mahaney et a1.* Physical aspects of the problems considered are not discussed here since they 
have been thoroughly analysed in Reference 8. Therefore, in the following, comments refer only to 
discrepancies between present and literature results, which mainly depend on the different 
numerical approach. 

The local Nusselt number for heating solely from below is reported in Figure 2 as a function of 
the dimensionless axial distance from the inlet. Sample points obtained from the graphical results 
of Reference 8, together with the pure forced convection limit, are presented for comparison. The 
very good agreement with the results of Reference 8 can be also found with respect to the cross- 
stream velocity and temperature distributions shown in Figure 3, refemng to nearly fully 
developed conditions. 

The Nusselt number profile along the duct for side heating is reported in Figure 4. While a 
substantially good agreement with comparison data is confirmed, slightly lower values of the 
Nusselt number are found in the present simulation. Cross-stream velocity and temperature 
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Figure 3. (a) Dimensionless cross-stream velocity vectors and (b) dimensionless temperature contours at x/&Pe =0.1 for 
bottom heating. The length of the arrow above the vector plot corresponds to a dimensionless velocity equal to 0.05. 

Dimensionless temperature contours range from 013 to 0.25 with a step equal to 0.02 

0.02 0.06 x 0.06 0.08 0.1 
Dh Pe 

Figure 4. Longitudinal distribution of the local Nusselt number for side heating: -, present solution; 0, sample 
points from Reference 8; ---, forced convection limit 

distributions at x/D,Pe=O-l are reported in Figure 5. A qualitative comparison with results of 
Reference 8 is satisfactory for both temperature and velocity fields. 

Heating from above results in a weak buoyancy-induced flow even if it produces a stable 
stratified top layer.* However, since the cross-stream velocities are one order of magnitude 
smaller than those of heating from below and from the side, the flow conditions resemble those of 
pure forced convection. As a consequence, the Nusselt number distributions for mixed and forced 
convection, reported in Figure 6, are almost indistinguishable. 

Results for two-side heating are presented in Figures 7-9. The Nusselt number distributions on 
different surfaces are similar to those found by Mahaney et aL,* even though, in some cases, minor 
discrepancies appear: different peak values in the curve of Nusselt number at the bottom surface 
for bottom and side heating (Figure 7(a)), slightly lower values in the curve pertaining to the side 
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lil 

a. b. 

Figure 5. (a) Dimensionless cross-stream velocity vectors and (b) dimensionless temperature contours at x/Q, Pe=O.l for 
side heating. The length of the arrow above the vector plot corresponds to a dimensionless velocity equal to 0.05. 

Dimensionless temperature contours range from 0.09 to 0.31 with a step equal to 0.02 

0 0.02 0.04 0.06 0.08 0.1 
Oh Pa 

Figure 6. Longitudina1.distribution of the local Nusselt number for top heating: -, present solution; 0, sample 
points from Reference 8; ---, forced convection limit 

surface for bottom and side and for top and side heating (Figures 7(b) and 9(a)), and in general a 
moderate downstream displacement of the locations of maximum and minimum values of Nusselt 
number. However, these discrepancies, which are due to the different numerical methods 
employed, do not lead to appreciably different predictions. In two-surface heating situations, 
instabilities appear in the velocity and temperature distributions, causing fluctuations in the 
average temperature of the heated walls and consequently oscillations in the local Nusselt 
number. This occurs at a dimensionless axial location x/Dh Pe approximately equal to 0.08,0.07 
and 0.045 for bottom and side (Figure 7), bottom and top (Figure 8) and side and top heating 
(Figure 9) respectively. This unexpected behaviour, not found by Mahaney et aL8 in their 
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Figure 7. Longitudinal distribution of the local Nusselt number (a) on the bottom plate and (b) on the side plate for 
equal bottom and side heating: -, present solution; 0, sample points from Reference 8; ---, forced convection limit 

15 I I I 

Nu 

n 

0 I I I 
0.02 0.0L x 0.06 0.08 0 0.02 0.04 0.06 0.08 

Dh Pe b. E$i a. 

Figure 8. Longitudinal distribution of the local Nusselt number (a) on the bottom plate and (b) on the top plate for 
equal bottom and top heating: -, present solution; 0, sample points from Reference 8; ---, forced convection limit 

Figure 9. Longitudinal distribution of the local Nusselt number (a) on the side plate and (b) on the top plate for equal 
side and top heating: -, present solution; 0, sample points from Reference 8; ---, forced convection limit 
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Figure 10. Longitudinal distribution of the local Nusselt number (a) on the bottom plate and (b) on the top plate for 
top cooling equal to bottom heating: -, present solution; 0, sample points from Reference 8; ---, forced convection 
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Figure 11. Longitudinal distribution of the local Nusselt number (a) on the bottom plate, (b) on the side plate and 
(c) on the top plate for peripherally uniform heating -, present solution; 0, sample points from Reference 8; 

--- , forced convection limit 
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computations because of the higher level of false diffusion implied by the finite difference method, 
can be explained via the high thermal stratification reached in these cases at the top surface of the 
duct. Although this thermally stratified layer corresponds to a physically stable configuration, 
numerical oscillations around the equilibrium conditions can appear when local fluctuations of 
the increasing buoyancy force cannot be damped out by diffusion effects. Anyway, since fully 
developed conditions are being approached at the distance from the inlet where such instabilities 
occur, most of the entrance region has already been analysed. 

Top plate cooling equal to bottom plate heating results in a transverse velocity field symmetric 
with respect to the horizontal mid-plane. In fact, with the assumed linear dependence of density 
on temperature, the secondary flow induced by cooling from above is equivalent to that driven by 
heating from below. However, this perfectly symmetric configuration becomes unstable owing to 
the increasing strenkth of opposite cross-stream vortices. As a consequence, longitudinal distribu- 
tions of local Nusselt number are found to be the same on bottom and top surfaces only up to a 
dimensionless distance x/Q&-O-04 from the inlet, as shown in Figures lqa) and lqb). The 
same behaviour was found by Mahaney et al.,' who did not report the different local Nusselt 
number distributions observed beyond this axial position. 

Finally, the effects of uniform heating on the whole perimeter are shown in Figure 11 with 
reference to the local Nusselt number distributions on the different plates. As in two-side heating, 
instabilities of an oscillatory nature appear at a distance x/LlJ'e-O-045 from the inlet as a 
consequence of increased thermal stratification in the upper part of the duct. However, results 
pertaining to the first part of the entrance region compare favourably with corresponding data of 
Mahaney et a1.' 

CONCLUSIONS 

A generally applicable finite element procedure is presented for the prediction of laminar mixed 
convection in the entrance region of horizontal straight ducts of arbitrary cross-section. The finite 
element method, applied here for the first time to the analysis of this kind of mixed convection 
problem, proved to be as reliable as the well established control-volume-based finite difference 
method, while retaining its capabilities of dealing with complex geometries. First-, second- and 
third-kind thermal boundary conditions are considered in the model formulation. The proposed 
procedure, based on the SIMPLE algorithm, is an extension of a previous one for the analysis 
of pure forced convection in simultaneously developing duct flows. New features include a 
Boussinesq approach in the treatment of the buoyancy forces and a conservative formulation of 
the advective terms in the transport equations. 

The aim of this paper was the validation of the procedure through comparisons of numerical 
results with available literature data for simultaneously developing laminar flow in the entrance 
region of rectangular ducts of aspect ratio a = 2, subject to uniform heating at different sides. 
Future work will concern the analysis of mixed convection in straight ducts of different 
geometries, for most thermal boundary conditions of practical interest, in wide ranges of Peclet 
and Grashof numbers. 

APPENDIX I 

The standard Galerkin finite element formulation, both for the general parabolic equation and 
for the model equations governing three-dimensional parabolic flows, are described in detail in 
References 9 and 14. In the following, matrix elements appearing in equations (9H24) are 
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reported 

( M , , ) i j = ~ J  unNiNjdA, 
Ae 

(q,,,)i=cJ 2NidA--C Gr (T-T,)N,dA, 
AP a Z  Re2 j A e  

1 1 
(H,)ij=pe Hij + pe c Bi Ni Nj dC, I. 

1 
(qT)ij =E c I (Peq" -BiT,)NidC. 

Ce 

APPENDIX 11: NOMENCLATURE 

aspect ratio of the rectangular cross section (dimensionless) 
domain of definition (dimensionless) 
Biot number (dimensionless), Bi = (ha) (D,,)/<k) 
specific heat at constant pressure (J kg-' K - I )  

boundary of the domain A (dimensionless) 
divergence of the velocity field (dimensionless) 
hydraulic diameter (m) 
gravitational acceleration (m sT2)  
Grashof number (dimensionless), Gr = (g)(B> (AT,) ( P ) ~  <4)3/(p)2 
heat transfer coefficient (W m-2 K-') 
thermal conductivity (W m-I K - l )  
shape function vector 
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Nusselt number (dimensionless), Nu= (hi) ( D h ) / ( k )  
nodal values of dimensionless pressure, vector 
Peclet number (dimensionless), Pe = Re Pr 
Prandtl number (dimensionless), Pr = ( c , )  ( p ) / ( k )  
Reynolds number (dimensionless), Re = ( p )  (U) ( D h ) / ( p )  
temperature (K) 
nodal values of dimensionless temperature, vector 
mean axial velocity (m s- ’) 
nodal values of dimensionless axial velocity component, vector 
nodal values of dimensionless transverse velocity components, vectors 
thermal expansion coefficient (K-’) 
reference temperature difference (K): 
(AT,)  = (T,) - ( T , )  for temperature boundary condition 
( A  To ) = (4“) ( Dh )/( k) for flux boundary condition 
(AT,) = ( T , )  - (T,  ) for convection boundary condition 
dynamic viscosity (kgm-’s-l) 
density (kgmP3) 

Subscripts and superscripts 

a ambient 
e entrance 
1 internal 
n at nth axial step 
r reference 
W wall 
( ) 
(7 average quantity 

dimensional quantity, used in the definition of dimensionless parameters and variables 
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